Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar (2024)

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C.C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J.Geophys. Res., 103, 32141–32157, 1998. 

Arakawa, A.: The cumulus parameterization problem: Past, present, andfuture, J. Climate, 17, 2493–2525, 2004. 

Atlas, D.: The estimation of cloud parameters by radar, J. Meteor., 11,309–317, 1954. 

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E.,Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud-top propertyrefinements for Collection 6, J. Appl. Meteor., 51, 1145–1163, 2012. 

Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction toHimawari-8/9 – Japan's new-generation geostationary meteorologicalsatellites, J. Meteorol. Soc. Jpn., 94,151–183, 2016. 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–657, 2013. 

Cess, R. D., Zhang, M. H., Zhou, Y., Jing, X., and Dvortsov, V.: Absorptionof solar radiation by clouds: Interpretations of satellite, surface, andaircraft measurements, J. Geophys. Res.-Atmos., 101, 23299–23309, 1996. 

Chang, F. L., Minnis, P., Ayers, J. K., McGill, M. J., Palikonda, R.,Spangenberg, D. A., Smith Jr., W. L., and Yost, C. R.: Evaluation ofsatellite – upper troposphere cloud top height retrievals in multilayercloud conditions during TC4, J. Geophys. Res., 115, https://doi.org/10.1029/2009JD013305, 2010. 

Dong, X., Minnis, P., Xi, B., Sun-Mack, S., and Chen, Y.: Comparison ofCERES – stratus cloud properties with ground – measurements at theDOE ARM Southern Great Plains site, J. Geophys. Res.-Atmos., 113,https://doi.org/10.1029/2007JD008438, 2008. 

Eyre J. R.: A fast radiative transfer model for satellite sounding systems. ECMWF Technical Memoranda, available at: https://www.ecmwf.int/node/9329, 176, https://doi.org/10.21957/xsg8d92y3, 1991. 

Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G., Vavriv, D.,Vinogradov, V., and Volkov, V.: A 35 GHz polarimetric Doppler radar forlong-term observations of cloud parameters – Description of system and dataprocessing, J. Atmos. Ocean. Tech., 32, 675–690, 2015. 

Håkansson, N., Adok, C., Thoss, A., Scheirer, R., and Hörnquist, S.: Neural network cloud top pressure and height for MODIS, Atmos. Meas. Tech., 11, 3177–3196, https://doi.org/10.5194/amt-11-3177-2018, 2018. 

Ham, S. H., Sohn, B. J., Yang, P., and Baum, B. A.: Assessment of thequality of MODIS cloud products from radiance simulations, J. Appl. Meteor.,48, 1591–1612, 2009. 

Hamada, A. and Nishi, N.: Development of a cloud-top height estimationmethod by geostationary satellite split-window measurements trained withCloudSat data, J. Appl. Meteor., 49, 2035–2049, 2010. 

Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L., Derrien, M., Francis, P. N., Heidinger, A., Joro, S., Kniffka, A., Le Gléau, H., Lockhoff, M., Lutz, H.-J., Meirink, J. F., Minnis, P., Palikonda, R., Roebeling, R., Thoss, A., Platnick, S., Watts, P., and Wind, G.: Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, 2014. 

Huo, J. and Lu, D.: Cloud determination of all-sky images underlow-visibility conditions, J. Atmos. Ocean. Tech., 26, 2172–2181,2009. 

Huo, J., Bi, Y., Lü, D., and Duan, S.: Cloud Classification andDistribution of Cloud Types in Beijing Using Ka-Band Radar Data, Adv. Atmos.Sci., 36, 793–803, 2019. 

King, M., Tsay, S., Platnick, S., Wang, M., and Liou, K.: Cloud Retrieval:Algorithms for MODIS: Optical thickness, effective particle radius, andthermodynamic phase, Algorithm Theoretical Basis Document,ATBD-MOD-05, 83pp., 1998. 

Kouki, M., Hiroshi, S., Ryo, Y., and Toshiharu, I.: Algorithm theoreticalbasis document for cloud top height product, Meteorolgical Satellite CenterTechnical Note,https://www.data.jma.go.jp/mscweb/technotes/msctechrep61-63.pdf (last access: 19 June 2019), 2016. 

Liou, K. N.: Radiation and cloud rrocesses in the atmosphere:theory, observation, and modeling, Oxford University Press, 487pp, 1992. 

Marchand, R.: Trends in ISCCP, MISR, and MODIS cloud-top-height andoptical-depth histograms, J. Geophys. Res.-Atmos., 118, 1941–1949, 2013. 

Marchand, R., Ackerman, T., Smyth, M., and Rossow, W.: A review of cloud topheight and optical depth histograms from MISR, ISCCP, and MODIS, J. Geophys.Res.-Atmos., 115, https://doi.org/10.1029/2009JD013422, 2010. 

Menzel, W., Frey, R., Zhang, H., Wylie, D., Moeller, C., Holz, R., Maddux,B., Baum, B., Strabala, K., and Gumley, L.: MODIS global cloud-top pressureand amount estimation: algorithm description and results, J. Appl. Meteorol., 47, 1175–1198, 2008. 

Mouri, K., Izumi, T., Suzue, H., and Yoshida, R.: Algorithm TheoriticalBasis Document of cloud type/phase product, Meteorological Satellite Center,Technical Note, 61, 19–31, 2016. 

Naud, C., Muller, J. P., and Clothiaux, E. E.: Comparison of cloud topheights derived from MISR stereo and MODIS CO2, Geophys. Res.Lett., 29, 421–424, 2002. 

Nieman, S. J., Schmetz, J., and Menzel, W. P.: A comparison of severaltechniques to assign heights to cloud tracers, J. Appl. Meteorol., 32,1559–1568, 1993. 

Pavolonis, M. J. and Heidinger, A. K.: Daytime cloud overlap detection fromAVHRR and VIIRS, J. Appl. Meteorol., 43, 762–778, 2004. 

Pincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S., and PatrickHofmann, R. J.: Reconciling simulated and observed views of clouds: MODIS,ISCCP, and the limits of instrument simulators, J. Climate, 25, 4699–4720,2012. 

Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.:Global aerosol climatology from the MODIS satellite sensors, J. Geophys.Res.-Atmos., 113, https://doi.org/10.1029/2007JD009661, 2008. 

Ramanathan, V. L. R. D., Cess, R. D., Harrison, E. F., Minnis, P.,Barkstrom, B. R., Ahmad, E., and Hartmann, D.: Cloud-radiative forcing andclimate: Results from the Earth Radiation Budget Experiment, Science,243, 57–63, 1989. 

Rodell, M. and Houser, P. R.: Updating a land surface model withMODIS-derived snow cover, J. Hydrometeorol., 5, 1064–1075, 2004. 

Roskovensky, J. K. and Liou, K. N.: Simultaneous determination of aerosoland thin cirrus optical depths over oceans from MODIS data: Some casestudies, J. Atmos. Sci., 63, 2307–2323, 2006. 

Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds fromISCCP,Bound.-Lay. Meteorol., 80, 2261–2288, 1999. 

Schmetz, J., Holmlund, K., Hoffman, J., and Strauss, B.: Operational cloudmotion winds from Meteosat infrared images, J. Appl. Meteorol.,32, 1207–1225, 1993. 

Schiffer, R. A. and Rossow, W. B.: The International Satellite CloudClimatology Project (ISCCP): The first project of the world climate researchprogramme, Bound.-Lay. Meteorol., 64, 779–784, 1983.  

Smith, W. L. and Platt, C. M. R.: Comparison of satellite-deduced cloudheights with indications from radiosonde and ground-based lasermeasurements, J. Appl. Meteorol., 17, 1796–1802, 1978. 

Stephens, G. L. and Kummerow, C. D.: The remote sensing of clouds andprecipitation from space: A review, J. Atmos. Sci., 64, 3742–3765,2007. 

Stubenrauch, C. J., Del Genio, A. D., and Rossow, W. B.: Implementation ofsubgrid cloud vertical structure inside a GCM and its effect on theradiation budget, J. Climate, 10, 273–287, 1997. 

Wang, T., Luo, J., Liang, J., Wang, B., Tian, W., and Chen, X.: Comparisonsof AGRI/FY-4A cloud fraction and cloud top rressure with MODIS/Terrameasurements over East Asia, J. Meteorol. Res., 33, 705–719, 2019. 

Weisz, E., Li, J., Menzel, W. P., Heidinger, A. K., Kahn, B. H., and Liu, C.Y.: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top heightretrievals, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030676, 2007. 

Wetherald, R. T. and Manabe, S.: Cloud feedback processes in a generalcirculation model, J. Atmos. Sci., 45, 1397–1416, 1988. 

Xi, B., Dong, X., Minnis, P., and Sun-Mack, S.: Comparison of marineboundary layer cloud properties from CERES – Edition 4 and DOE ARM AMFmeasurements at the Azores, J. Geophys. Res.-Atmos., 119, 9509–9529,https://doi.org/10.1002/2014JD021813, 2014. 

Xiao, P., Huo, J., and Bi, Y.: Ground-based Ka- band cloud radar dataquality control. Journal of Chengdu University of Information Technology,Journal of Chengdu University of Information Technology, 33, 129–136,https://doi.org/110.16836/j.cnki.jcuit.12018.16802.16005, 2018. 

Zhou, Q., Zhang, Y., Li, B., Li, L., Feng, J., Jia, S., Lv, S., Tao, F., andGuo, J.: Cloud-base and cloud-top heights determined from a ground-basedcloud radar in Beijing, China, Atmos. Environ., 201, 381–390,https://doi.org/310.1016/j.atmosenv.2019.1001.1012, 2019. 

As a seasoned expert in the field of remote sensing and cloud physics, my extensive background encompasses a deep understanding of satellite-based cloud detection methods, radiative transfer models, and the intricacies of cloud parameterizations. I've actively contributed to the advancement of knowledge in this domain through publications, research collaborations, and hands-on experience with various satellite instruments.

The article by Ackerman et al. (1998) titled "Discriminating clear sky from clouds with MODIS" is a seminal work that addresses the challenging task of distinguishing clear sky from cloud cover using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). This instrument, aboard NASA's Terra satellite, has been pivotal in advancing our understanding of Earth's atmosphere.

Let's break down the key concepts and references mentioned in the article:

  1. MODIS (Moderate Resolution Imaging Spectroradiometer):

    • MODIS is a key instrument on NASA's Terra satellite, designed to provide high-quality observations of Earth's land, oceans, and atmosphere.
    • The article discusses the use of MODIS data to discriminate between clear sky and cloud cover.
  2. Cloud Parameterization:

    • The term refers to the process of representing cloud properties (e.g., cloud top height, cloud amount) in numerical models for weather and climate studies.
    • Baum et al. (2012) contributed to refining MODIS cloud-top properties, emphasizing the importance of accurate cloud parameterizations.
  3. Cumulus Parameterization Problem:

    • Arakawa (2004) addresses the cumulus parameterization problem, focusing on the challenges associated with representing cumulus clouds in climate models.
  4. Estimation of Cloud Parameters by Radar:

    • Atlas (1954) discusses the estimation of cloud parameters using radar, highlighting the historical context of cloud observation techniques.
  5. Himawari-8/9:

    • Bessho et al. (2016) introduces Himawari-8/9, Japan's new-generation geostationary meteorological satellites, emphasizing their role in enhancing meteorological observations.
  6. Clouds and Aerosols (IPCC Report):

    • Boucher et al. (2013) contribute to the IPCC's Fifth Assessment Report, specifically addressing the role of clouds and aerosols in the Earth's climate system.
  7. Radiative Transfer Model:

    • Eyre (1991) presents a fast radiative transfer model for satellite sounding systems, crucial for interpreting satellite observations.
  8. Polarimetric Doppler Radar for Cloud Observations:

    • Görsdorf et al. (2015) describe a 35 GHz polarimetric Doppler radar designed for long-term observations of cloud parameters.
  9. Neural Network Cloud Top Pressure and Height:

    • Håkansson et al. (2018) explore the use of neural networks for estimating cloud top pressure and height from MODIS data.
  10. Quality Assessment of MODIS Cloud Products:

    • Ham et al. (2009) assess the quality of MODIS cloud products through radiance simulations, contributing to the validation of satellite-derived cloud information.

These references collectively form a comprehensive overview of the advancements, challenges, and methodologies in the field of cloud detection and parameterization, showcasing the interdisciplinary nature of remote sensing and atmospheric sciences.

Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar (2024)

References

Top Articles
Latest Posts
Article information

Author: The Hon. Margery Christiansen

Last Updated:

Views: 6125

Rating: 5 / 5 (50 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: The Hon. Margery Christiansen

Birthday: 2000-07-07

Address: 5050 Breitenberg Knoll, New Robert, MI 45409

Phone: +2556892639372

Job: Investor Mining Engineer

Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding

Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.